Mitochondrial function and aerobic capacity assessed by high resolution respirometry in Thoroughbred horses
نویسندگان
چکیده
During the initial stages of training of young Thoroughbred horses, low intensity exercise is employed to increase aerobic capacity. High Resolution Respirometry (HRR) allows the determination of aerobic capacities in small samples of permeabilised muscle fibres. The aim of the study was to measure the mitochondrial function by HRR in Thoroughbred horses, to compare these values to Warmblood horses and to evaluate the effect of a 10-weeks training period. The mitochondrial function was measured by HRR using different substrate-uncoupler protocols (SUIT 1 and 2) in muscle microbiopsies from two groups of untrained horses: 17 Warmblood and 8 Thoroughbred and in the group of 8 Thoroughbred horses before and after a 10-week training period. The SUIT1 protocol employed to compare the two groups of horses showed that in Thoroughbred horses, the mean values for oxygen flux expressed as tissue mass-specific respiration were significantly higher for complex I (CI)Glutamate+Malate, CI + complex II, and maximum electron transport capacities (ETSmax) than the mean values measured in Warmblood horses. The SUIT 1 and SUIT 2 protocols revealed large differences among Thoroughbred horses before and after training. The SUIT 2 protocols showed a significant difference for the complex I activity before and after training but only when the oxygen flux was expressed as percentage of ETSmax. This study shows the interest of HRR in equine sport medicine and exercise physiology, but shows that the technique requires further refinement. Indeed significant differences have been shown between the Thoroughbred and the Warmblood horses highlighting the need to have baseline data for each breed. The Thoroughbred horses had globally a high oxidative phosphorylation capacity with an increase of CI activity induced by an aerobic training program.
منابع مشابه
Physical Fitness and Mitochondrial Respiratory Capacity in Horse Skeletal Muscle
BACKGROUND Within the animal kingdom, horses are among the most powerful aerobic athletic mammals. Determination of muscle respiratory capacity and control improves our knowledge of mitochondrial physiology in horses and high aerobic performance in general. METHODOLOGY/PRINCIPAL FINDINGS We applied high-resolution respirometry and multiple substrate-uncoupler-inhibitor titration protocols to ...
متن کاملPhysiological responses of young thoroughbred horses to intermittent high-intensity treadmill training
BACKGROUND Training of young Thoroughbred horses must balance development of cardiopulmonary function and aerobic capacity with loading of the musculoskeletal system that can potentially cause structural damage and/or lameness. High-speed equine treadmills are sometimes used to supplement exercise on a track in the training of young Thoroughbreds because the horse can run at high speeds but wit...
متن کاملHORSE SPECIES SYMPOSIUM: Exercise physiology of the horse.
Research in human and rodents has shown an age-associated decline in physical function, aerobic capacity and skeletal muscle mitochondrial function, which in humans begins around the age of 50 yr. On the other hand, many horses can still actively work or compete beyond 20 yr of age, an age equivalent to a 65-year-old human. The purpose of the present study was to determine the age-related chang...
متن کاملMitochondria express enhanced quality as well as quantity in association with aerobic fitness across recreationally active individuals up to elite athletes.
Changes in skeletal muscle respiratory capacity parallel that of aerobic fitness. It is unknown whether mitochondrial content, alone, can fully account for these differences in skeletal muscle respiratory capacity. The aim of the present study was to examine quantitative and qualitative mitochondrial characteristics across four different groups (n = 6 each), separated by cardiorespiratory fitne...
متن کاملSkeletal muscle ex vivo mitochondrial respiration parallels decline in vivo oxidative capacity, cardiorespiratory fitness, and muscle strength: The Baltimore Longitudinal Study of Aging
Mitochondrial function in human skeletal muscle declines with age. Most evidence for this decline comes from studies that assessed mitochondrial function indirectly, and the impact of such deterioration with respect to physical function has not been clearly delineated. We hypothesized that mitochondrial respiration in permeabilized human muscle fibers declines with age and correlates with phosp...
متن کامل